Energy Implications of Refrigerated Warehouse Practices

R. Paul Singh
Professor of Food Engineering
University of California
Davis, CA 95616

www.rpaulsingh.com

A Freezer Warehouse

Turn off refrigeration during periods of peak electric demand to reduce energy costs?

Implications on

- energy savings
- food quality

Frozen Food Quality

- Frozen food quality is sensitive to storage temperature and fluctuations in temperature.
- Interruption in refrigeration system operation may result in negative impacts on product quality.
 - accelerated deterioration reactions at elevated temperatures,
 - the growth in ice crystal size occurring during the temperature fluctuations.

Temperature Abused Frozen Broccoli

Temperature Abused Frozen Shrimp

Energy Consumption vs. Storage Temperature

Variables to Consider

- Volume of refrigerated warehouse
- Amount of frozen food in warehouse
- Length and timing of refrigeration system downtime
- Amount of air exchange occurring during product movement in and out of facility
- Timing of refrigeration down periods in relation to timing of product movement
- Temperature of product entering storage

Preliminary Analysis

- Analysis conditions include:
 - 1. A 3 million cubic foot warehouse
 - 2. Warehouse contains 30 million pounds of frozen food.
 - 3. Product movement creates 1000 warehouse door openings per 24 hour day; each opening cause an exchange of 250 cubic feet of air.
 - 4. Product storage is at -18 C (0 F) and air exchange is 50 F

Preliminary Analysis

- Analysis conditions include
 - 1. Product pallets contain product with 75 cubic feet and 1500 pounds.
 - 2. Individual product packages on the pallet are 30 pounds and occupy one-half cubic foot.
 - 3. Each package has 2 square feet of area exposed to air.

General Results of Analysis

- In a typical warehouse, product will occupy about one-sixth of the volume.
- About one-tenth of the air volume within the product storage environment will be exchanged within a 24 hour period.
- If air exchange does not occur during period of downtime, storage temperature will not change.
- When air exchange occurs during refrigeration downtime, storage air temperature may increase from 0 F to 5 F and product temperature may reach 4 F within 10 hours.

Influence of Incoming Product Temperature

Incoming Product <u>Temperature</u>	Warehouse Air <u>Temperature</u>	Product Temperature <u>After 10 hour</u>
0 F	5 F	4
5	8	6
10	12	9
15	16	12

Note – these are preliminary estimates, and include assumptions about the thermal energy exchanges within the warehouse.

Impact of Product Temperature

- A significant factor to consider is the temperature of the frozen product entering the storage.
- When incoming product is at temperatures above 0 F, impact of refrigeration downtime becomes more significant.
- The thermal capacity of frozen product has significant impact on the temperature in the warehouse.
- The addition of higher temperature product tends to magnify the impacts of fluctuations in air temperature.

Additional Analysis Needed

- The quantity of product in the warehouse should be varied and the impact needs to be evaluated.
- The volumes of air exchanged during product movement must be measured.
- The length of time required for product and air to reach an equilibrium temperature requires more careful analysis.

Future Tasks

- Develop a simulation model for prediction of frozen food temperature in a warehouse during refrigeration downtime
- To use simulation model to evaluate the influence of
 - Warehouse capacity
 - Quantity of product in warehouse
 - Temperature of air and product
 - Volume of air exchange
 - Temperature of product entering
 - Amount of air movement
 - Fan operation
- To validate the model by experimental measurements in a commercial warehouse
- To provide a user-friendly program for warehouse operators
- To develop recommendations for warehouse management regarding downtime

Simulation Model

- Industrial Scale Food Freezing and Thawing Simulation
 - J. Mannapperuma, R. P. Singh, F. Erdogdu
 - WFLO Virginia

1.2*1.2*1.2 m³ pallet size

1.2*1.2*1.2 m³ pallet size

Deterioration Modes of Frozen Foods

- Frozen Fruits and Vegetables
 - Loss of nutrients (vitamins)
 - Loss of texture (temperature abuse)
 - Loss of flavor (lipoxygenase, peroxidase)
 - Loss of tissue moisture (forming package ice)
 - Discoloration
- Frozen concentrated juices
 - Loss of nutrients (vitamins)
 - Loss of flavor
 - Discoloration
 - Yeast growth (upon temperature abuse)

Modes of Food Deterioration

- Frozen Meats, Poultry, and Seafood
 - Rancidity
 - Toughening (protein denaturation)
 - Discoloration
 - Desiccation (freezer burn)
- Frozen dairy products (e.g ice cream)
 - Iciness (recrystallization of ice crystals)
 - Sandiness (lactose crystallization)
 - Loss of flavor
 - Disruption of emulsion systems

Modes of Food Deterioration

- Frozen Convenience Foods
 - Rancidity in meat products
 - Weeping and curdling of sauces
 - Loss of flavor
 - Discoloration
 - Package ice
- Frozen bakery products (raw dough, bread)
 - Burst can (upon temperature abuse) dough
 - Loss of fermentation capability (dough)
 - Staling (becoming leathery)
 - Loss of fresh aroma

Kinetic Models

Time

Temperature Dependence of Quality Change

ln k

Storage of Frozen Foods – Costs vs. Quality Loss

